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THE OSCILLATOR CORRESPONDENCE OF ORBITAL
INTEGRALS, FOR PAIRS OF TYPE ONE

IN THE STABLE RANGE

ANDRZEJ DASZKIEWICZ AND TOMASZ PRZEBINDA

1. Introduction. Let G, G’ Sp(W) be a reductive dual pair of type I; see
[H2]. Thus, there is a division algebra D (R, C, H) with an involution over
R, two finite-dimensional vector spaces over D, V and V’ equipped with non-
degenerate forms (,) and (,)’, respectively--one hermitian and the other skew-
hermitian. The groups G, G’ are the isometry groups of the forms (,), (,)’, respec-
tively. Let W denote the vector space W Hom(V’, V). A symplectic form on W
is defined by

(1.1) (w, w’) trl/a(ww’*) (w, w’ e W),

where the map Hom(V’, V) w - w* e Hom(V, V’) is defined by

(1.2) (w(v’), v) (v’, w*(v))’ (we W, ve V,v’ s V’).

The groups G and G’ act on W via postmultiplication and premultiplication by
the inverse, respectively. These actions embed G and G’ into the symplectic group
Sp(W).~

Let Sp denote the metalectic group, and let G, G’ be the preimages of G, G’
under the covering map Sp Sp. The duality theorem of Howe [H3] states that
there is a bijection H H’ between certain irreducible admissible representa-
tions of G and G’.

Recall the unnormalized moment maps

(1.3) zg: W g w ww* 6 g,

In the early 1980s, Howe conjectured that the wave-front sets of H and rI’ are
related to the geometry of moment maps in some nice way.

CONJECTURE (Howe).
correspondence,

For a oeneric pair (H,H’) occurrin9 in Howe’s

(1.4) wF(rr) z,,(’r-X(WF(II))).
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The equality (1.4) was proven in [P. 7.10] under a very strong assumption that
the pair G, G’ is in the stable range, with G the smaller member, and that the
representation 17 is unitary and finite-dimensional.

In this paper, we propose another approach towards a proof of the conjecture
(1.4). Let (R)rt denote the (distribution) character of l’I, and let Un be the lowest
term in the asymptotic expansion of On at the identity, as defined in [BV]. Simi-
larly, we have On, and un,. We would like to state a conjecture relating un and
un, to the geometry of moment maps. Before we do it, we need some preparation.

In [H1], Howe has deduced from Witt’s theorem the following.

THEOREM 1.5. There is an open dense G. G’-invariant subset Wmax W such
that for every orbit (9

_
zg(wmax), the set (9’= Za,(wmc Z-1((9)) is a single G’

orbit.

The set W is not unique, of course. In this paper, we assume that the pair G,
G’ is in the stable range, with G the smaller member. This means that V’ has an
isotropic subspace of dimension greater than or equal to the dimension of V. We
shall prove the following.

THEOREM 1.6. There is an affine section try: - W to the map zg, a function
m(z, g’) on x G’ and a (singular) measure la on G’ such that

(a) fwq(w)dw=gfob(g’a(z)’g’-)dgm(z,g’)dlz(g’)dz, (beCc(W)),

and if : ’ - C is a continuous and rapidly decreasing function, then so is

(b) zg(z) fo, p o z,(a,(z)" 9’-)m(z, g’) dl(g’) (z ).

Theorem 1.5 holds for the set W {g" o’o(g)’g’, g G, z , g’ G’}. Further-
more, if is smooth and supp q z,(Wmx) is compact, then q S(), the
Schwartz space of .
For an explicit formulation, see (2.24), (2.25), (3.15), and (3.16). The case

G Spp,, G’ O*z. can be treated similarly, and it is left to the reader.
Let #o be the canonical invariant measure on a G-orbit (9

_
I. Then by [RR],

#o can be integrated against any rapidly decreasing function on I. Thus, in view
of the above, we may define a measure */ on ’ by

where is a rapidly decreasing function on (. It will be dear from Theorem 1.6
and from the following construction that the measure */ is invariant and is
supported on the closure of
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THEOREM 1.7. With the above notation, we have z’*# const.#,, where
const > 0 and (9’

_
I’ is the G’-orbit corresponding to (9 via the Howe-Witt theorem

(Theorem 1.5).

Let x(, denote the Killing form on I and define a Fourier transform by

f (y)e’ dy ( S(), x ).

Let e S*() denote the Fourier transform of e. By Harish-Chandra, this distri-
bution coincides with a function (z), z ; see W, 8.3.53. Similarly, we have
,(z’), z’ ’. By combining (1.6) and (1.7) with the fact that is absolutely
integrable against any Schwartz function, we deduce the following theorem.

THeOreM 1.8. here is a constant const > 0 such that for S() with
supp ,(Wma) compact

where the inteorals are absolutely converoent.
Now we can state our conjecture.

CONJECTURE. There is a constant const > 0, dependin9 only on normalization
of the Lebesoue measure on ’, such that

(1.9)

where fin stands for the complex conjugate of the function uri.

Thanks to I-R] and Theorems 1.5, 1.7, and 1.8, equation (1.9) would imply (1.4).
Recently, we have proved that (1.9) holds in the "deep stable range" (see [DP]),
where we can compute the distribution character of H’ from that of H. Although
proving the conjecture in the general situation is at present more a matter of hard
work than insight, a proof has not yet been written down.

2. The case when (,)’ is hermitian. In this section, D is equipped with an
involution D a 6 D, which is trivial only if D R. Let Mm,n(D) denote
the set of matrices with m rows and n columns and with entries from D. Let
Mn(D) Mn,(D) and let D Mn, I(D). We view D as a left vector space over D
by the following formula

av v. t (a D, v Dn).

Each matrix F 6 Mn(D) acts on D via left multiplication. Thus, M(D) may be
identified with EndD(D). Since R

_
D, D may be viewed as a real vector space,
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and we have an obvious inclusion Endi(Dn)
_

EndR(Dn). For F Mn(D), let
detR(F) denote the determinant of F viewed as an element of Endn(D).
For two positive integers d’> 2d, set V Da and V’= Da’. Fix a matrix

F Md(D)such that F -F and Idetn(F)l 1. Let

o o 610 F" 0

I 0 0

2d+p’+q’=d’, p=p’+d, q=q’+d.

Set

(2.1) (u, v) (u’, v’)’ ’F’v’ (u, v V, u’, v’ V’).

Then (,) is a nondegenerate skew-hermitian form on V and (,)’ is a nondegenerate
hermitian form on V’ of signature p, q. The corresponding isometry groups and
Lie algebras can be represented in terms of matrices as follows:

G {g M(D); ttFg F), g {z Ma(D); ’F + Fz 0),

G’= { Ma,(D); ttF’g F’}, g’= {z Ma,(D); ’F’ + F’z 0}.

Let W Ma,a,(D). This is a symplectic space over R with the symplectic form
defined in terms of the forms (2.1) as in (1.1). Let L’ {g G’; tg Id,}. This is a
maximal compact subgroup of G’. The centralizer of L’ in Sp(W) is isomorphic to
L G x G. Let g g. Then we have the moment maps zg: W 1, zg,: W ’and z: W --. given explicitly by

(2.2)
"ca(w wF’’F, z(w) ((w’ + wF’’)F, -(w’-wF’’)F),

"ca,(w) F’’Fw (w W).

(These maps z, z,, z are essentially determined by the fact that they are constant
on the G’, G, L’ orbits in W, respectively.) We shall view W as a direct sum

(2.3) W Ma(D)q) Ma,a,_2a(D) Ma(D),

where each w W is written as w (a, b, c), a Ma(D), b Ma,a,_2a(D), c Ma(D).
In terms of (2.3), define an affine map try: fl W

(2.4) ag(z)=(z,O,-F-1) (z).

We shall see in (2.7) that this is a section to the map
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We shall identify the general linear group GL(V) with a subgroup of G’ by the
following injective group homomorphism

(2.5)
g 0 0 1GL(V) g --* 0 Id,_2d 0 G’.
o o

Then for g GL(V) and z e I

(2.6) 9(a,(z))=a,(z)’9-1 (z9-1, 0,-F-’)
and

.(0(.(z))) z

"q(9(a,(z))) ((zg-(’)-’ + (F-)’t’9F-x + zF-X)F,

(2.7)
1/2gzg-x 0 -gF-lt 1z,,(g(a,(z))) 0 0 0

1/4(’)-tFzo- 0 -1/2(t’)-xP

Before proceeding any further, we make the following observation. With the
notation of (2.7), let S zF- and let T (F-t)tt#F-. Then

Let t {S Ma(D); S ’} be the space of hermitian matrices of size d. Let
g+ {S g; S > 0} be the subset of positive definite matrices. For S g, let
affs+ {T ace+; T > (1/4)ST-S}, and let aff_s {P aft+; P _+ S > 0}.
LEMMA 2.9. Fix S 9ft. Then the map

1o,s+ T--.-ST-XS + T

is a bijection.



DASZKIEWICZ AND PRZEBINDA

Proof. Suppose first that d 1 and D R. Then the above statement means
that for any s R, the map

1
(2,10) Isl, +oo s2t- + (Isl,

is a bijection. This is elementary.
Notice that for GL(V)

+ T)’ 1
-(eSt’)(oT’)-*(gS’) + gT’.

Hence, by the spectral theorem for hermitian matrices, we may assume that

1 ( 00) (2
s E

The stabilizer of (1/2)S in GL(V) (under the above action) consists of matrices of
the form

:)(2.11) g hEh’= E, detl(C) # 0.

Suppose we know that the lemma holds if d r + s (i.e.,/f (1/2)S E). Let d > r + s.
We shall write T / in a block form

as in (2.11). Notice that Ta > 0. Take B -hT2 Tf in (2.11). Then

(2.12) gT., (h(TI Tz T-*’.’)’ O)0 CT3’
Thus, elements of+ are diagonalizable via the action of the stabilizer of (1/2)S.
(This shall be verified shortly for the case (1/2)S E.) Hence, by (2.10) the map
(2.9) is surjective.

Suppose T, T’ os+ and

(2.13)
1 1

T’.-ST-S + T =-ST’-S +
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Write T’ in a block form as in (2.11):

Then (2.13) implies that T2 T and T3 T. Thus, the same 9 as in (2.12) gives

(2.14) gT,tt (h(T TT-l2’)t O)0 CT

By combining (2.12-2.14), we get

(E0 )(h(T1-T2T-l22) 0 -1

0 C,’) (0 00)
h(T1- T2 T-l22’)+ 0

=(E0 O0)(h(T;, T2T-I22t)t 0 -1

0 C,’) (0 00)
h Td T2T-122t 0 )-1-

0 cr3t

Hence, by taking the terms in the upper-left corner, we see that

E((T1 T W’7’))-IE + (T1 TW7’)

E((T;- T T-7’))-E + (T;- T T-17’).

Therefore (by our assumption that the lemma holds for d r + s),

Thus, T1 T and consequently T T’. Hence, the map (2.9) is injective.
From now on, we assume d r + s. Let H denote the stabilizer of (1/2)S E

in GL(V). Let B+ {b diag(bl, b2, bd); bl > b2 >"" > br > 0, br+l > b,+2 >
> ba > 0}. Let U {/ GL(V); t Id}. By a well-known structure theorem

for symmetric spaces IS, 7.1.3-1, the map

(2.15) H x + x U (h, b, u) hbu e GL(V)
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is surjective with the fiber {(hl, b, l-lu); centralizer of b in H c U}. In particu-
lar, we see that the action of H on Jcd+ is diagonalizable. Hence, (2.10) implies
that the map (2.9) is surjective.

It remains to prove the injectivity. Suppose T hb2 and T’ h’b’2ff’t s+

satisfy (2.13). Then

E(hb2’)-lE + hb2’= E(h’b’2’)-IE + h’b’2’,

so

E(b2)-E + b2= (h-h’)(E(b’2)-E + b’2)(h-h’)t.

But E commutes with b and E2 Ia. Hence,

(2.16) b-2 + b2= (h-lh,)(b’-2 + b’2)(h-h’).
Moreover, the condition T, T’ s+ implies that b > b2 .’. b > 1 and
b,+>b,+2>.’.>bd>l. Notice that if y>x>l, then y+y->x+x-1.
Hence, b-2 + b2 B+ and b’-2 + b’2 e B+. Therefore, (2.15) and (2.16) imply that
b-2 + b2 b’-2 + b’2 and h-h’= for some in the centralizer of b-2 + b2 in
H c U. Notice that b can be written in terms of c b-2 + b2

b= x/.c---+ x//C22 -4
Hence, commutes with b. Therefore, T’ h’b’2ff’t hlb21-x hb2 T. I-’1

COROLLARY 2.17. Let (f x f+)/ {(S, T)e x f+; T > (1/4)ST-S}.
Then the map

1 )(gff x +)+ (S, T) ST-tS + T + S,-ST-IS + T- S + x 9ff+

is a bijection.

Proof. Given P, P’ f+, we want to show that there is a unique (S, T)
(f x +)+ such that

1=ST-S + T + S P
4

1=ST-S + T- S P’.
4
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Clearly, S (1/2)(P P’). Notice that P + P’ (P P’) > 0. Thus, (1/2)(P + P’)
s. Hence, by (2.9) there is a unique T s+ such that (1/4)ST-iS + T

(1/2)(P + P’). 121

Define a representation p of GL(V) on the real vector space 9’ by

(2.18) p(o)S

COROLLARY 2.19. Let dP denote a Lebesoue measure on . Then there is
const > 0 such that for a test function q/

fae far qt(P,P’)dP’dP=cnstt+ + a a+)+

1 )ST-1S + T- S dT dS.

Proof. The derivative of the map (2.17) at (S, T) coincides with the following
linear map:

1 1
T_(AS, AT) --. AS. T-iS + -S. T-1. AS -ST-1. AT. S + AT + AS,

1 1
T_1AS. T_IS + S" T-I’AS S "AT’T- S + AT- AS

)

After a linear transformation, the right-hand side becomes

1 1 1
T_ -1AS,AS’T-lS +-S’T-I’AS-S "AT’T S + AT

Hence, the determinant of the above is a constant multiple of the determinant of
the following linear map:

AT AT--ST-I’AT" T-1S 1- p ST-1 AT.

The following lemma is well known, but for completeness we include a simple
proof.

LEMMA 2.20. Let r 2 dimlt oeg/dimlt V (notice here that dima 9’ dima g).
Then, for d’ > d, there is const > 0 such that for a test function d/

dx const | PIta’-’)12 dP.ff(P) ldetll
d,d,(U) , ’+
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Proof. Let g GL(V). Then

and

$(0Pt)ldetn PIta’-’)/2 dP

fe+ (P)ldetn g-tP(l-t)tltd’-’)/2ldetl gl-" dP

Idetn 91 -d’ y+ (P)ldetn PItd’-r)/2 dP.

LEMMA 2.21. Let

( GL(V))+ ((z, g) GL(V); 4Id > (t)-Fzg-t((t)-tFzg-)t}.

Set

M(z, 9) det,((’)-Fzg-X((’)-XFz9-)’+l (’)-XFz9-) (p-r)[2

deta((t)-lFz1-t((fft)-lFzo-1)*+l-I (t)-lFz-l) (q-r)

deta(1- p((’)-tFz9-X)) Idett(g)ld’-r.

One can normalize all the measures involved so that for a test function q Cc(Wmax)

frvb(w) dw=ft fLq(kg(ag(z)))dkM(z, 9)dzd9
g GL(V))+

Proof. Define a function on by

o zt(w)= ;., (wk)dk.
Since there is a matrix u such that ufi’= Id and uF’’= ( (2.2) and
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(2.20) imply that

(w) dw v o (w) dw

By (2.19), the above is a constant multiple of

detl ST-1S + T + S

(q-r)/2

dT dS.

Let us write S zF- and T (F-t)TI’gF-, as in (2.8). Then again by (2.20), the
above is a constant multiple of

f ((a(%(z))))
fjx GL(V))+ detR(zo-l(t)-lt+(fft)-ltoF-l+ zF-1)

detll(go-l(t)-lt+(fft)-ltoF-1-gF-1) (q-r)/2

(2.22) x deter(1- detl O I’ do dz.

(p-r)/2

Using the relation

detn(A + (fft)-’tgF-) detldff ()- AF9- + 1)ldet(9)]2,

one can transform (2.22) to obtain the integral formula of (2.21). El
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Finally, we make a specific choice of the matrix F:

0- ild_

ild if D H.

Also, let

{b diag(bl, ba); bx ba/2+ > bz
bd]2+2 >"" > bd/2 bd > 0}

B+ {b diag(bx, ba); bx > b2 >"" > bs > O,
b/ > bs/2 >"" > b > 0}

{b diag(bx, ha); b > b2 >"" > bn > 0}

ifD R

ifD C
ifD H.

There is a function 6(b), b B+, IS, 8.1.1] such that

and

(b: b2 ba+ )n, n(2.23) 6(b) < const, a- d-3 dima(D).

Finally, we arrive at a precise formulation of the Theorem 1.6 (a).

TI-tEOREM 2.24. Let (g x B+)+ {(z, b) x B+; 4In > (b-XFzb-X)(b-IFzb-Y}.
Let

m(z, b) det,(b-Fzb-(b-Fzb-)t+l b-Fzb-) (p-r)/2

deta(b-lFzb-l(b-lFzb-1)t+l+ b-lFzb-1) (q-r)/2

dett(1- p(b-IFzb-)) [deta bla’-"6(b).

Then, with appropriate normalization of all the measures involved,

B+)+
q(h’aa(z)" b-xk- dk m(z, b) db dz dh.

Proof. We apply the equation (2.23) to (2.21) by writing 0 ubh and then
changing z to h-zh. O
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Proof of Theorem 1.6. It remains to show Theorem 1.6 (b) and the last state-
ment. Let be a continuous rapidly decreasing function on g’. Then

(2.25) aC(z) j o z,,(trg(z)b-lk-1) dk m(z, b) db.
B+)+

Since the function m is bounded on (g x B/)/, it is clear from (2.7) that

(z) < const fB+ fL’ I zo’(tro(z)b-lk-)l Idetlt bla’-rf(b)dk db

x constN fB+ (1 + Ibzb-Xl)-N(1 + IbF-bl)-Sldetl bla’-rf(b)db.

Notice that

Ibzb-X 2 --IbFzb-l 2 Z b21(Fz),,12bj-2

Z I(Fz),,,I 2 + Z I(Fz),,al2(bbj-2 4- bi-2b)
i<j

I(Fz),,,I 2 + 2 I(Fz),,l 2 --IFzl2 --Izl 2.
i<j

Further, the inequality (2.23) implies that for N > 0 large enough

(2.26) (1 + IbF-bl)-Sldetl bln’-r6(b) db < .
Thus,

I(z)l const(1 + Izl)-
This verifies Theorem 1.6 (b).

If C(g’) and supp ff $g,(Wmax) is compact, then we integrate over a com-
pact subset of (g x B/)/ in (2.25). The projection of this set on B/ is also com-
pact. Thus, we may take derivatives with respect to z g and estimate as above
without appealin9 to the inequality (2.26). Hence, the last statement follows. 121

3. The case when (,)’ is skew-symmetric and D = R or C. In this section, D
is equipped with the trivial involution. Let d’> 2d be positive integers with d’
even. Let V Dn and let V’ D’. Fix a nonsingular matrix F Mn(R) such that
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F F F-1. Let

(3.1) F’ 0 F" 0 F"
0 Id,/2-a

--1 0 0 --Ia,a_ 0

Set

(3.2) (u, v) u’Fv, (u’, v’)’= u"F’v’ (u, v V, u’, v’ V’).

Then (,) is a nondegenerate symmetric form on V, and (,)’ is a nondegenerate
skew-symmetric form on V’. The corresponding isometry groups and Lie algebras
can be represented in terms of matrices as follows:

G {g M(D); g’Fg F}, g {z Mn(D); z’F + Fz 0},

G’= {9 Ma,(D); 9’F’9 F’}, g’= {z Ma,(D); z’F’ + F’z 0}.

Let L’ {g G’; tg In,}, where g is the complex conjugation if D C,
and is trivial otherwise. This is a maximal compact subgroup of G’. Let us view
the quaternions as matrices

(a
_

a,bC.

Then

(3.3) H C Cj, aj j, a e C.

Let

ifD C.

If D’ H, let j D’ be as in (3.3). If D’ C, let j D’ be V/- 1. Then

(3.4) D’ D ) Dj.
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Let D’ a D’ denote the standard nontrivial involution over R. Let

L {0 Md(D’); tjF9 iF), and

I= {x Md(D’); 2tjF + jFx 0}.

Notice that if G O,,q, then L U,,q, and if G O,(C), then L O’,.
Let W Mn,,(D). The groups G, O’ act on W as indicated in the introduction.

The moment maps zg: W - g, z: W and zg,: W g’ are given explicitly by

(3.5) z(w) wF’w’F, "q(w) (wF’w’ + wj)F, "re(w) F’w’Fw (w W).

As in (2.3), we have a decomposition

(3.6) W M,(D) Mn,,v-2,(D) ) Md(D)

in terms of which we define a section of the map "
(3.7) a(z) (z, O, F-) (z ).

We identify GL(V) with a subgroup of G’ by a formula analogous to (2.5):

g 0 0 1GL(V) g --, 0 Id,_2d 0 G’.
o o (o’)-

Then, for g GL(V) and z g,

(3.8) 9(tr,(z))=a,(z)’9-x =(zo-l, 0, F-X9’).
With the notation of (3.8), we have

,(o(,(z))) z

z(9(a,(z)))=(zg-X(’O’)-’+Fo"F-zjF)jF

(3.9)
1/2gzg -x 0 gFg

,,(o(,(z))) 0 0 0

-1/4(O’)-z’Fzo- O -1/2(g’)-Iz’o’
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With the notation of (3.9), let S zF and let T FgIF. Then,

(3.10)
S=-S, T= T,T>0.

Let {S Mn(D); S -S} be the space of skew-symmetric matrices of size d.
Let ocg+ +(D) be the set of positive hermitian matrices of size d as before.
Similarly, we define +(D’).

LEMMA 3.11.
the map

Let ( x (+)+ {(S, T) 5e x g+; T > (1/4)S-1’}. Then

1 t+ T Sj.(Se x ocg+)+ (S, T) S-1 g(D’)+

is a bijection.

Proof. The group GL(V) GL(Dd)
_
GL(D’d) acts on 5e, aCe’(D), W(D’) by

g(S) gSg’, g(T) gTO’, 9(P) 9PI’ (g e GL(V), S e 5f, T t’, P e .ff(D’)).

Moreover, we have the following formula:

T Sj) ’
1
-(oSg’)(oT’)-I(oS9’) + (oTt’)- (gSo’)j.

Clearly, the action of GL(V) on 6e x ocg+ preserves (6 x 0’+)+. Fix S 6 5e. Given
P 6 +(D’) such that P- Sj g/(D’), we will show that there is a unique
T 6 g+(D) such that

(3.12) 1S_I + T Sj P.
4

Using the action of GL(V), we may assume that

00) (0S E
-I

The stabilizer of (1/2)S in GL(V) consists of matrices of the form

hEh’ E, det(C) 4: 0.
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As in the proof of (2.9), we may reduce to the case (1/2)S E and complete the
proof. El

For # GL(V) and T g, set

p(g) T gTg’.

Then p(g) Endm(). As in (2.19), one can verify the following lemma.

LEMMA 3.13. One can normalize the Lebesgue measures dQ, dT, dS on (D’),
5a, oeg(D), respectively, so that for a test function

+ (D’) +)+

LN 3.14. Let

( x GL(V))+ {(z, g) e x GL(V); 4Ia > ((g’)-Fzg-)((g’)-Fzo-)’}.

Let r’ 2 dim, W(D’)/dim,(D’a) and let r 2 dim, W(D)/dim,(Da). Set

M(, 0) det (0)-F0-((0)-F0-) + 1 (O)-Fo-Fj

One can normalize all the measures involved so that for a test function e C(W"),

L(g))+

Pro@ Define a function 0 on by

dk.

Then by (3.5) and (3.13),

(W) dw Iv," o z(w) dw

q((-wF’w7 + w’)jF) dw fw (w(1 Fj)jF) dw.
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SetD=
Id 0

so that
-D

of vector spaces

see (3.1). There is an isomorphism

Md,a,(D) Ma,a,/2(D)0) Ma,d,/2(D) w (A, B) A + BDj Ma,a,/2(D’),

and the formula

w(1 F’j)’ (A + BDj)(A + BDj)’.

Thus, by Lemmas 2.20 and 3.13:

(w) dw ft (x2tjF) dx
d,d,/2(I’)

fe (PjF)ldeta PIn’/2-’’)/2 dP
+(D’)

(d’/2 -r’)]2

detll(1- dT dS.

If we write S zF and T FgtF as in (3.10), then, again by Lemma 2.20,

(w) dw ft. ((zo-I(’)-x’ + Fg’F zFj)jF)
det zo-(t’)-x + Fg’F- zFj

det(1- p(zg-()-IF)) ]det 91 do dz,

and the lemma follows. El

Let us make a specific choice

I)

ifD R

I ifD C.
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Let

B+ {b diag(b, bn); b >’" > bp > O, b,+x >"" > bn > O}
{b diag(bx, bn); b >.." > bn > O}

ifD R
ifD C.

There is a function 6(b), b e B+, IS, 8.1.1] such that

L(V) +

6(b) < const" (ba-Xb-3’’’ b2d+l)n, n dimn(D).

Finally, we arrive at a precise formulation of Theorem 1.6 (a), which can be
verified the same way as Theorem 2.24.

THEOREM 3.15. Let (g B+)+ {(z, b) e g B+; 4Id > (b-XFzb-X)(b-XFzb-X)t}.
Let

m(z, b) detl(b-XFzb-X(b-XFzb-X)’+l b-XFzb-XFj) (d’/2-r’)/2

detn(1- p(b-XFzb-X)) Idetl bla’-2’+’f(b).

Then,

As before,

fL b(h.tr(z). b-Xk-x) dk db dz dh.re(z, b)
g B+)+

B+)+
o z,(a(z)b-xk-a) dk m(z, b) db.

Hence, the proof of the remaining statements of Theorem 1.6 is the same as in the
previous case.
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